Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons

نویسندگان

  • A M Tolkovsky
  • A E Walker
  • R D Murrell
  • H S Suidan
چکیده

A method for clamping cytosolic free Ca2+ ([Ca2+]i) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca2+ influx was eliminated by titration of extracellular Ca2+ with EGTA and reinstated through voltage-sensitive Ca2+ channels. The rate of neurite outgrowth and the number of neurites thus became dependent on the extent of depolarization by KCl, and withdrawal of KCl caused an immediate cessation of growth. Neurite outgrowth was completely blocked by the L type Ca2+ channel antagonists nifedipine, nitrendipine, D600, or diltiazem at sub- or micromolar concentrations. Measurement of [Ca2+]i in cell bodies using the fluorescent Ca2+ indicator fura-2 established that optimal growth, similar to that seen in normal medium, was obtained when [Ca2+]i was clamped at resting levels. These levels of [Ca2+]i were set by serum, which elevated [Ca2+]i by integral of 30 nM, whereas the addition of NGF had no effect on [Ca2+]i. The reduction of [Ca2+]o prevented neurite fasciculation but this had no effect on the rate of neurite elongation or on the number of extending neurites. These results show that neurite outgrowth from NGF-dependent neurons occurs over long periods in the complete absence of Ca2+ signals, suggesting that Ca2+ signals are not necessary for operating the basic machinery of neurite outgrowth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C a 2+ Transients Are Not Required as Signals for Long-term Neurite Outgrowth f om Cultured Sympathetic Neurons

A method for clamping cytosolic free Ca 2+ ([Ca2+]~) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca 2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca 2+ influx was eliminated by titration of extracellular Ca 2+ wit...

متن کامل

Ca2+ oscillations induced by testosterone enhance neurite outgrowth.

Testosterone has short- and long-term roles in regulating neuronal function. Here, we show rapid intracellular androgen receptor-independent effects of testosterone on intracellular Ca2+ in neuroblastoma cells. We identified testosterone-induced Ca2+ signals that began primarily at the neurite tip, followed by propagation towards the nucleus, which was then repeated to create an oscillatory pat...

متن کامل

Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth.

Neurite extension and branching are affected by activity-dependent modulation of intracellular Ca2+, such that an optimal window of [Ca2+] is required for outgrowth. Our understanding of the molecular mechanisms regulating this optimal [Ca2+]i remains unclear. Taking advantage of the large growth cone size of cultured primary neurons from pond snail Lymnaea stagnalis combined with dsRNA knockdo...

متن کامل

Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons.

Insulin and the insulin-like growth factors (IGFs) may directly affect the development of the nervous system. NGF, IGF-II, and insulin's effects on neurite formation and neuronal survival were studied in peripheral ganglion cell cultures from chick embryos. Neurite outgrowth was enhanced in a dose-dependent manner by insulin and IGF-II in sympathetic cell cultures. The half-maximally effective ...

متن کامل

Interleukin-17A increases neurite outgrowth from adult postganglionic sympathetic neurons.

Inflammation can profoundly alter the structure and function of the nervous system. Interleukin (IL)-17 has been implicated in the pathogenesis of several inflammatory diseases associated with nervous system plasticity. However, the effects of IL-17 on the nervous system remain unexplored. Cell and explant culture techniques, immunohistochemistry, electrophysiology, and Ca2+ imaging were used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 110  شماره 

صفحات  -

تاریخ انتشار 1990